Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
1.
J Cosmet Dermatol ; 23(5): 1875-1883, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38450923

RESUMO

BACKGROUND: As a traditional Chinese herbal medicine, Paeonia lactiflora Pall is rich in various active ingredients such as polysaccharides and total flavonoids while having ornamental value. It has potential application value in the development of food and cosmetics. OBJECTIVE: To study the in vitro efficacy of Paeonia lactiflora Pall seeds oil. METHODS: Firstly, the levels of linolenic acid and linoleic acid in Paeonia lactiflora Pall seeds oil were quantified using gas chromatography. The impact of Paeonia lactiflora Pall seeds oil on the proliferation rate of B16F10 cells was assessed through the CCK-8 method, while the melanin content of B16F10 cells was determined using the sodium hydroxide lysis method. The inhibitory effects of Paeonia lactiflora Pall seeds oil on elastase, collagenase and hyaluronidase were evaluated by biochemical techniques in vitro. Lastly, the hen's egg chorioallantoic membrane test (HET-CAM) was conducted to confirm the absence of eye irritation caused by Paeonia lactiflora Pall seeds oil. RESULTS: Paeonia lactiflora Pall seeds oil within a certain volume concentration range (0.5%-4%) had no effect on the proliferation of B16F10 cells. Paeonia lactiflora Pall seeds oil showed significant inhibition of elastase, collagenase and hyaluronidase. Notably, the highest concentration tested, 4% Paeonia lactiflora Pall seed oil, yielded the most pronounced outcomes without causing any irritation. CONCLUSION: A certain concentration of Paeonia lactiflora Pall seeds oil has a significant effect on decreasing the melanin content in B16F10 cells and inhibiting the activities of elastase, collagenase, and hyaluronidase, which can provide a reference for the development of pure natural cosmetics raw materials.


Assuntos
Proliferação de Células , Colagenases , Hialuronoglucosaminidase , Melaninas , Paeonia , Elastase Pancreática , Óleos de Plantas , Sementes , Paeonia/química , Sementes/química , Animais , Camundongos , Melaninas/análise , Elastase Pancreática/metabolismo , Óleos de Plantas/farmacologia , Proliferação de Células/efeitos dos fármacos , Colagenases/metabolismo , Ácido Linoleico/farmacologia , Ácido Linoleico/análise , Cosméticos/química , Cosméticos/farmacologia , Melanoma Experimental/tratamento farmacológico , Ácido alfa-Linolênico/farmacologia , Ácido alfa-Linolênico/análise , Membrana Corioalantoide/efeitos dos fármacos , Linhagem Celular Tumoral , Galinhas
2.
Heliyon ; 10(6): e28071, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38524605

RESUMO

To explore the feature of cancer cells and tumor subclones, we analyzed 101,065 single-cell transcriptomes from 12 colorectal cancer (CRC) patients and 92 single cell genomes from one of these patients. We found cancer cells, endothelial cells and stromal cells in tumor tissue expressed much more genes and had stronger cell-cell interactions than their counterparts in normal tissue. We identified copy number variations (CNVs) in each cancer cell and found correlation between gene copy number and expression level in cancer cells at single cell resolution. Analysis of tumor subclones inferred by CNVs showed accumulation of mutations in each tumor subclone along lineage trajectories. We found differentially expressed genes (DEGs) between tumor subclones had two populations: DEGCNV and DEGreg. DEGCNV, showing high CNV-expression correlation and whose expression differences depend on the differences of CNV level, enriched in housekeeping genes and cell adhesion associated genes. DEGreg, showing low CNV-expression correlation and mainly in low CNV variation regions and regions without CNVs, enriched in cytokine signaling genes. Furthermore, cell-cell communication analyses showed that DEGCNV tends to involve in cell-cell contact while DEGreg tends to involve in secreted signaling, which further support that DEGCNV and DEGreg are two regulatorily and functionally distinct categories.

3.
Biophys Rev ; 16(1): 13-28, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38495443

RESUMO

With the rapid advance of single-cell sequencing technology, cell heterogeneity in various biological processes was dissected at different omics levels. However, single-cell mono-omics results in fragmentation of information and could not provide complete cell states. In the past several years, a variety of single-cell multimodal omics technologies have been developed to jointly profile multiple molecular modalities, including genome, transcriptome, epigenome, and proteome, from the same single cell. With the availability of single-cell multimodal omics data, we can simultaneously investigate the effects of genomic mutation or epigenetic modification on transcription and translation, and reveal the potential mechanisms underlying disease pathogenesis. Driven by the massive single-cell omics data, the integration method of single-cell multi-omics data has rapidly developed. Integration of the massive multi-omics single-cell data in public databases in the future will make it possible to construct a cell atlas of multi-omics, enabling us to comprehensively understand cell state and gene regulation at single-cell resolution. In this review, we summarized the experimental methods for single-cell multimodal omics data and computational methods for multi-omics data integration. We also discussed the future development of this field.

4.
eNeuro ; 11(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346901

RESUMO

Human and animal imaging studies demonstrated that chronic pain profoundly alters the structure and the functionality of several brain regions and even causes mental dysfunctions such as depression and anxiety disorders. In this article, we conducted a multimodal study cross-sectionally and longitudinally, to evaluate how neuropathic pain affects the brain. Using the spared nerve injury (SNI) model which promotes long-lasting mechanical allodynia, results showed that neuropathic pain deeply modified the intrinsic organization of the brain functional network 2 weeks after injury. There are significant changes in the activity of the left thalamus (Th_L) and left olfactory bulb (OB_L) brain regions after SNI, as evidenced by both the blood oxygen level-dependent (BOLD) signal and c-Fos expression. Importantly, these changes were closely related to mechanical pain behavior of rats. However, it is worth noting that after morphine administration for analgesia, only the increased activity in the TH region is reversed, while the decreased activity in the OB region becomes more prominent. Functional connectivity (FC) and c-Fos correlation analysis further showed these two regions of interest (ROIs) exhibit different FC patterns with other brain regions. Our study comprehensively revealed the adaptive changes of brain neural networks induced by nerve injury in both cross-sectional and longitudinal dimensions and emphasized the abnormal activity and FC of Th_L and OB_L in the pathological condition. It provides reliable assistance in exploring the intricate mechanisms of diseases.


Assuntos
Neuralgia , Humanos , Ratos , Animais , Ratos Sprague-Dawley , Estudos Transversais , Encéfalo/metabolismo , Hiperalgesia , Modelos Animais de Doenças
5.
Nucleic Acids Res ; 52(6): 3106-3120, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38364856

RESUMO

Chromatin accessibility plays a critical role in the regulation of cell fate decisions. Although gene expression changes have been extensively profiled at the single-cell level during early embryogenesis, the dynamics of chromatin accessibility at cis-regulatory elements remain poorly studied. Here, we used a plate-based single-cell ATAC-seq method to profile the chromatin accessibility dynamics of over 10 000 nuclei from zebrafish embryos. We investigated several important time points immediately after zygotic genome activation (ZGA), covering key developmental stages up to dome. The results revealed key chromatin signatures in the first cell fate specifications when cells start to differentiate into enveloping layer (EVL) and yolk syncytial layer (YSL) cells. Finally, we uncovered many potential cell-type specific enhancers and transcription factor motifs that are important for the cell fate specifications.


Assuntos
Cromatina , Desenvolvimento Embrionário , Peixe-Zebra , Animais , Cromatina/genética , Cromatina/metabolismo , Gema de Ovo/metabolismo , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Análise de Célula Única , Domínios e Motivos de Interação entre Proteínas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Nat Cancer ; 5(3): 500-516, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38200243

RESUMO

Immunosuppressive myeloid cells hinder immunotherapeutic efficacy in tumors, but the precise mechanisms remain undefined. Here, by performing single-cell RNA sequencing in colorectal cancer tissues, we found tumor-associated macrophages and granulocytic myeloid-derived suppressor cells increased most compared to their counterparts in normal tissue and displayed the highest immune-inhibitory signatures among all immunocytes. These cells exhibited significantly increased expression of immunoreceptor tyrosine-based inhibitory motif-bearing receptors, including SIRPA. Notably, Sirpa-/- mice were more resistant to tumor progression than wild-type mice. Moreover, Sirpα deficiency reprogramed the tumor microenvironment through expansion of TAM_Ccl8hi and gMDSC_H2-Q10hi subsets showing strong antitumor activity. Sirpa-/- macrophages presented strong phagocytosis and antigen presentation to enhance T cell activation and proliferation. Furthermore, Sirpa-/- macrophages facilitated T cell recruitment via Syk/Btk-dependent Ccl8 secretion. Therefore, Sirpα deficiency enhances innate and adaptive immune activation independent of expression of CD47 and Sirpα blockade could be a promising strategy to improve cancer immunotherapy efficacy.


Assuntos
Antígeno CD47 , Neoplasias Colorretais , Camundongos , Animais , Antígeno CD47/genética , Antígeno CD47/metabolismo , Fagocitose , Macrófagos/metabolismo , Células Mieloides/metabolismo , Neoplasias Colorretais/patologia , Microambiente Tumoral
7.
Plant Dis ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38173267

RESUMO

Pear is popular among people, which is an important pillar industry in China. In March of 2023, dark brown necrotic lesions were discovered on the trunks of Pyrus pyrofolia cv. Osmanthus pear in orchard, Liuzhou City, Guangxi Zhuang Autonomous Region. In August, field investigation and sample collection were conducted in orchard. Forty pear trees were selected for symptomatic observation, which of 21 had lesions ranging from 10 to 24 per tree, and 19 with 1 to 8 lesions, respectively. To isolate the pathogen, small tissue pieces of 3 diseased pear trunk samples were disinfected with 75% ethanol for 1 minute, rinsed with sterile water, and dried with filter paper. The tissue pieces were placed on potato dextrose agar (PDA) plates and cultured in a dark incubator at 25℃. Six isolates with the similar morphology were obtained. One of the six isolates was randomly selected as the representative strain and named as GX-3. Mycelium grows with an average rate of 4.26 cm/d. The hypha is highly aerial, and is initially white and then turns black. Subsequently, pycnidia formed and secreted black mucus on the PDA medium after 28 days. The immature conidia were ellipsoid, colorless, hyaline, and unicellular, mostly becoming brown bicellular with longitudinal stripes at maturity. The conidial size was 22.5 to 32.6×12.1 to 19.7µm, and the average size was 28.4±2.3×16.7±2.0 µm (n=50), respectively. GX-3 colony morphology was consistent with that of Lasiodiplodia pseudotheobromae (Alves et al.2008). For molecular identification, the internal transcribed spacer of rDNA (ITS), translation elongation factor 1-α (TEF1-α), and ß-tubulin regions were amplified using the primers ITS1/4, EF1-728F/986R, and Bt2a/Bt2b, respectively (White et al.1990; Carbone and Kohn 1999; Glass and Donaldson 1995). The obtained sequences of GX-3 were deposited in NCBI with Accession numbers OR655421, OR661231, and OR661230, respectively. The sequences of ITS, TEF1-α, and ß-tubulin from GX-3 are 99.44%、99.67% and 99.78% identities with those of L. pseudotheobromae CBS 447.62, respectively. The phylogenetic analysis was performed by maximum likelihood method, revealing that GX-3 is closely clustered with the isolates of L. pseudotheobromae. Therefore, the GX-3 strain was identified as L. pseudotheobromae. GX-3 was further analyzed for its pathogenicity on pear. Firstly, the GX-3 mycelium plugs and spraying spore suspension with the concentration of 1×107 conidia/ml were applied on the stems of 4-month-old healthy birch-leaf pear (Pyrus betulifolia Bunge) potted seedlings by acupuncture needle method, meanwhile PDA and sterile water were used as controls. After 3 days of inoculation, stem surface of the birch-leaf pear exhibited dark brown lesions with slight surface depression, obvious dryness, and canker symptoms, while the control treatment showed no symptoms. The GX-3 was also inoculated on in vitro branches of 'Hosui', 'Hongxiangsu', 'Bodoqing' and 'Xuehua', showing dark brown canker lesions. The same pathogen can be successfully isolated from diseased stems and branches but not from the controls, which accomplishes Koch's postulates. L. pseudotheobromae has been widely reported that it can cause rot and canker on apple, walnut, hackberry, and so on (Xue et al. 2019; Wang et al. 2023; Liang et al. 2020). This is the first report of necrosis and canker disease caused by L. pseudotheobromae on pear in China, which is a potential threat to pear industry.

8.
Nat Commun ; 15(1): 133, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168040

RESUMO

Adipocytes are the primary sites for fatty acid storage, but the synthesis rate of fatty acids is very low. The physiological significance of this phenomenon remains unclear. Here, we show that surplus fatty acid synthesis in adipocytes induces necroptosis and lipodystrophy. Transcriptional activation of FASN elevates fatty acid synthesis, but decreases NADPH level and increases ROS production, which ultimately leads to adipocyte necroptosis. We identify MED20, a subunit of the Mediator complex, as a negative regulator of FASN transcription. Adipocyte-specific male Med20 knockout mice progressively develop lipodystrophy, which is reversed by scavenging ROS. Further, in a murine model of HIV-associated lipodystrophy and a human patient with acquired lipodystrophy, ROS neutralization significantly improves metabolic disorders, indicating a causal role of ROS in disease onset. Our study well explains the low fatty acid synthesis rate in adipocytes, and sheds light on the management of acquired lipodystrophy.


Assuntos
Adipócitos , Lipodistrofia , Masculino , Camundongos , Humanos , Animais , Espécies Reativas de Oxigênio/metabolismo , Adipócitos/metabolismo , Lipodistrofia/genética , Lipodistrofia/metabolismo , Ácidos Graxos/metabolismo , Estresse Oxidativo , Camundongos Knockout
9.
Eur J Ophthalmol ; : 11206721241226469, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38204151

RESUMO

PURPOSE: This study aimed to evaluate the impact of intravitreal triamcinolone acetonide (TA) administration after peeling of idiopathic epiretinal membranes (iERM) on both anatomical and visual outcomes, utilizing the ectopic inner foveal layer (EIFL) staging scheme. METHODS: In this retrospective case-control study, we analyzed 43 eyes from 43 patients diagnosed with iERM between June 2019 and December 2021. All participants were categorized into the TA or control groups based on administering intravitreal TA injection following ERM peeling. We thoroughly reviewed the clinical data, including the preoperative and postoperative best-corrected visual acuity (BCVA), central foveal thickness (CFT), and macular cube volume (VOL), with ERM stages classified according to the EIFL staging scheme. RESULTS: The study enrolled 22 eyes in the TA and 21 in the control groups. Following a mean follow-up period of 11.07 ± 2.02 months, noteworthy improvements in EIFL stages were observed in both cohorts (p < 0.01), but without significant distinctions between groups. In the TA group, 63.64% of eyes demonstrated improvements in EIFL stages, while the control group exhibited 76.19% (p = 0.37). At the final visit, both groups experienced a noteworthy reduction in the postoperative CFT and VOL (p < 0.05), coupled with significant improvement in BCVA (p < 0.01). No substantial differences appeared between the two groups concerning BCVA, CFT, and VOL (all p > 0.05). CONCLUSIONS: Our study suggested that concurrent intravitreal TA injection following ERM removal did not provide additional benefits regarding anatomical and visual improvement in iERM cases classified as Stages 2 and 3.

10.
Mol Plant Pathol ; 25(1): e13392, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37837244

RESUMO

Apple stem pitting virus is a species in the genus Foveavirus in the family Betaflexiviridae. Apple stem pitting virus (ASPV) commonly infects apple and pear plants grown worldwide. In this study, by integrating bimolecular fluorescence complementation, split-ubiquitin-based membrane yeast two-hybrid, and Agrobacterium-mediated expression assays, the interaction relationships and the subcellular locations of ASPV proteins TGBp1-3 and CP in Nicotiana benthamiana leaf cells were determined. Proteins CP, TGBp1, TGBp2, and TGBp3 were self-interactable, and TGBp2 played a role in the formation of perinuclear viroplasm and enhanced the colocalization of TGBp3 with CP and TGBp1. We found that the plant microfilament and endoplasmic reticulum structures were involved in the production of TGBp3 and TGBp2 vesicles, and their disruption decreased the virus accumulation level in the systemic leaves. The TGBp3 motile vesicles functioned in delivering the viral ribonucleoprotein complexes to the plasma membrane. Two cysteine residues at sites 35 and 49 of the TGBp3 sorting signal were necessary for the diffusion of TGBp3-marked vesicles. Furthermore, our results revealed that TGBp1, TGBp2, and CP could increase plasmodesmal permeability and move to the adjacent cells. This study demonstrates an interaction network and a subcellular location map of four ASPV proteins and for the first time provides insight into the functions of these proteins in the movement of a foveavirus.


Assuntos
Flexiviridae , Potexvirus , Proteínas Virais/metabolismo , Flexiviridae/genética , Retículo Endoplasmático/metabolismo , Movimento Celular , Potexvirus/genética
11.
Cells ; 12(19)2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37830600

RESUMO

Pear ring rot disease is an important branch disease, caused by Botryosphaeria dothidea. With the discovery of fungal viruses, the use of their attenuated properties for biological control provides a new strategy for the biological control of fungal disease. RNA silencing is a major antiviral defense mechanism in plants, insects, and fungi. Viruses encode and utilize RNA silencing suppressors to suppress host defenses. Previous studies revealed that Botryosphaeria dothidea chrysovirus 1 (BdCV1) exhibited weak pathogenicity and could activate host gene silencing by infecting B. dothidea. The aim of our study was to investigate whether BdCV1 can encode a silencing suppressor and what effect it has on the host. In this study, the capability of silencing inhibitory activity of four BdCV1-encoded proteins was analyzed, and the P3 protein was identified as a BdCV1 RNA silencing suppressor in the exotic host Nicotiana benthamiana line 16c. In addition, we demonstrated that P3 could inhibit local silencing, block systemic RNA silencing, and induce the necrosis reaction of tobacco leaves. Furthermore, overexpression of P3 could slow down the growth rate and reduce the pathogenicity of B. dothidea, and to some extent affect the expression level of RNA silencing components and virus-derived siRNAs (vsiRNAs). Combined with transcriptomic analysis, P3 had an effect on the gene expression and biological process of B. dothidea. The obtained results provide new theoretical information for further study of interaction between BdCV1 P3 as a potential silencing suppressor and B. dothidea.


Assuntos
Ascomicetos , Pyrus , Vírus de RNA , Doenças das Plantas/microbiologia
12.
iScience ; 26(9): 107588, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37646019

RESUMO

T cell activation is a key event in adaptive immunity. However, the dynamics and influencing factors of T cell activation remain unclear. Here, we analyzed CD4 T cells that were stimulated with anti-CD3/CD28 under several conditions to explore the factors affecting T cell activation. We found a stimulated T subset (HSPhi T) highly expressing heat shock proteins, which was derived from stimulated naive T. We identified and characterized inert T, a stimulated T cell subset in transitional state from resting T to activated T. Interestingly, resting CXCR4low T responded to stimulation more efficiently than resting CXCR4hi T. Furthermore, stimulation of CD4 T in the presence of CD8 T resulted in more effector T and more homogeneous expressions of CD25, supporting that presence of CD8 T reduces the extreme response of T cells, which can be explained by regulation of CD4 T activation through CD8 T-initiated cytokine signaling and FAS/FASLG signaling.

14.
Mol Plant Pathol ; 24(9): 1107-1125, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37312259

RESUMO

Diseases caused by Alternaria alternata and Botryosphaeria dothidea diminish pear yield and quality, and restrict the pear agricultural industry. Lignification is a conserved mechanism for plant resistance against pathogen invasion. The regulatory mechanisms underlying defence-induced lignification in pear in response to fungal pathogen infection remain unknown. In this study, analysis of lignification level and lignin content in pear revealed that A. alternata and B. dothidea induced lignification, and transcriptomics showed that lignin biosynthesis was affected. To explore whether laccases (LACs) mediated by miR397 regulate lignification in pear, we investigated the role of PcmiR397 in repressing the expression of PcLACs using 5'-RNA ligase-mediated-RACE and co-transformation in tobacco. Opposite expression patterns for PcmiR397 and PcLAC target genes were observed in pear in response to pathogens. Transient transformation in pear demonstrated that silencing PcmiR397 and overexpressing a single PcLAC enhanced resistance to pathogens via lignin synthesis. To further reveal the mechanism underpinning the PcMIR397 response of pear to pathogens, the PcMIR397 promoter was analysed, and pMIR397-1039 was found to be inhibited by pathogen infection. The transcription factor PcMYB44 was up-regulated, and it bound to the PcMIR397 promoter and inhibited transcription following pathogen infection. The results demonstrate the role of PcmiR397-PcLACs in broad-spectrum resistance to fungal disease, and the potential role of PcMYB44 involved in the miR397-PcLAC module in regulating defence-induced lignification. The findings provide valuable candidate gene resources and guidance for molecular breeding to improve resistance to fungal disease in pear.


Assuntos
Pyrus , Pyrus/genética , Pyrus/microbiologia , Lignina/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Resistência à Doença/genética
15.
Arch Virol ; 168(7): 181, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37314504

RESUMO

A novel plant virus with a double-stranded (ds) RNA genome was detected in Lilium spp. in China by high-throughput sequencing and tentatively named "lily amalgavirus 2" (LAV2). The genomic RNA of LAV2 is 3432 nucleotides (nt) in length and contains two open reading frames (ORFs) that putatively encode a '1 + 2' fusion protein of 1053 amino acids (aa), generated by a '+1' programmed ribosomal frameshift (PRF). ORF1 encodes a putative 386-aa protein of unknown function, and ORF2 overlaps ORF1 by 350 nt and encodes a putative 783-aa protein with conserved RNA-dependent RNA polymerase (RdRp) motifs. The '+1' ribosomal frameshifting motif, UUU_CGN, which is highly conserved among amalgaviruses, is also found in LAV2. Sequence analysis showed that the complete genome shared 46.04%-51.59% nucleotide sequence identity with those of members of the genus Amalgavirus and had the most similarity (51.59% sequence identity) to lily amalgavirus 1 (accession no. OM782323). Phylogenetic analysis based on RdRp amino acid sequences showed that LAV2 clustered with members of the genus Amalgavirus. Overall, our data suggest that LAV2 is a new member of the genus Amalgavirus.


Assuntos
Lilium , Vírus de RNA , Filogenia , China , Nucleotídeos , RNA de Cadeia Dupla , RNA Polimerase Dependente de RNA/genética
16.
J Exp Bot ; 74(17): 5218-5235, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37235634

RESUMO

Understanding the mechanisms underlying plant resistance to virus infections is crucial for viral disease management in agriculture. However, the defense mechanism of watermelon (Citrullus lanatus) against cucumber green mottle mosaic virus (CGMMV) infection remains largely unknown. In this study, we performed transcriptomic, metabolomic, and phytohormone analyses of a CGMMV susceptible watermelon cultivar 'Zhengkang No.2' ('ZK') and a CGMMV resistant wild watermelon accession PI 220778 (PI) to identify the key regulatory genes, metabolites, and phytohormones responsible for CGMMV resistance. We then tested several phytohormones and metabolites for their roles in watermelon CGMMV resistance via foliar application, followed by CGMMV inoculation. Several phenylpropanoid metabolism-associated genes and metabolites, especially those involved in the flavonoid biosynthesis pathway, were found to be significantly enriched in the CGMMV-infected PI plants compared with the CGMMV-infected 'ZK' plants. We also identified a gene encoding UDP-glycosyltransferase (UGT) that is involved in kaempferol-3-O-sophoroside biosynthesis and controls disease resistance, as well as plant height. Additionally, salicylic acid (SA) biogenesis increased in the CGMMV-infected 'ZK' plants, resulting in the activation of a downstream signaling cascade. SA levels in the tested watermelon plants correlated with that of total flavonoids, and SA pre-treatment up-regulated the expression of flavonoid biosynthesis genes, thus increasing the total flavonoid content. Furthermore, application of exogenous SA or flavonoids extracted from watermelon leaves suppressed CGMMV infection. In summary, our study demonstrates the role of SA-induced flavonoid biosynthesis in plant development and CGMMV resistance, which could be used to breed for CGMMV resistance in watermelon.


Assuntos
Citrullus , Tobamovirus , Transcriptoma , Citrullus/genética , Citrullus/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Melhoramento Vegetal , Tobamovirus/genética , Doenças das Plantas/genética
17.
Oncogenesis ; 12(1): 22, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37080999

RESUMO

Anti-PD-1 therapy has shown promising outcomes in the treatment of different types of cancer. It is of fundamental interest to analyze the efficacy of anti-PD-1 therapy in cancer patients infected with hepatitis B virus (HBV) since the comorbidity of HBV and cancer is widely documented. We designed a multicenter retrospective study to evaluate the efficacy of anti-PD-1 therapy on non-liver cancer patients infected with HBV. We found anti-PD-1 therapy achieved much better outcomes in HBV+ non-liver cancer patients than their HBV- counterparts. We performed single-cell RNA sequencing (scRNA-seq) on peripheral blood mononuclear cells (PBMCs) from esophageal squamous cell carcinoma (ESCC) patients. We found both cytotoxicity score of T cells and MHC score of B cells significantly increased after anti-PD-1 therapy in HBV+ ESCC patients. We also identified CX3CR1high TEFF, a subset of CD8+ TEFF, associated with better clinical outcome in HBV+ ESCC patients. Lastly, we found CD8+ TEFF from HBV+ ESCC patients showing higher fraction of Exhaustionhi T than their HBV- counterpart. In summary, anti-PD-1 therapy on HBV+ non-liver cancer patients is safe and achieves better outcomes than that on HBV- non-liver cancer patients, potentially because HBV+ patients had higher fraction of Exhaustionhi T, which made them more efficiently respond to anti-PD-1 therapy.

18.
Mol Plant Pathol ; 24(8): 961-972, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37118922

RESUMO

RNA silencing, a core part of plants' antiviral defence, requires the ARGONAUTE, DICER-like, and RNA-dependent RNA polymerase proteins. However, how these proteins contribute to watermelon's RNA interference (RNAi) pathway response to cucumber green mottle mosaic virus (CGMMV) has not been characterized. Here, we identify seven ClAGO, four ClDCL, and 11 ClRDR genes in watermelon and analyse their expression profiles when infected with CGMMV. ClAGO1 and ClAGO5 expression levels were highly induced by CGMMV infection. The results of ClAGO1 and ClAGO5 overexpression and silencing experiments suggest that these genes play central roles in watermelon's antiviral defence. Furthermore, co-immunoprecipitation and bimolecular fluorescence complementation experiments showed that ClAGO1 interacts with ClAGO5 in vivo, suggesting that ClAGO1 and ClAGO5 co-regulate watermelon defence against CGMMV infection. We also identified the ethylene response factor (ERF) binding site in the promoters of the ClAGO1 and ClAGO5 genes, and ethylene (ETH) treatment significantly increased ClAGO5 expression. Two ERF genes (Cla97C08G147180 and Cla97C06G122830) closely related to ClAGO5 expression were identified using co-expression analysis. Subcellular localization revealed that two ERFs and ClAGO5 predominantly localize at the nucleus, suggesting that enhancement of resistance to CGMMV by ETH is probably achieved through ClAGO5 but not ClAGO1. Our findings reveal aspects of the mechanisms underlying RNA silencing in watermelon against CGMMV.


Assuntos
Citrullus , Tobamovirus , Citrullus/metabolismo , Tobamovirus/genética , Regiões Promotoras Genéticas , Etilenos/metabolismo , Doenças das Plantas
19.
Viruses ; 15(2)2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36851483

RESUMO

Chinese jujube (Ziziphus jujuba Mill.) is a widely grown fruit crop at Aksu in Xinjiang Uygur Autonomous Region of China. Viral disease-like symptoms are common on jujube plants. Here, for the first time, we report a virus tentatively named persimmon ampelovirus jujube isolate (PAmpV-Ju) infecting jujube plants. The virus was identified using high-throughput sequencing from a jujube plant (ID: AKS15) and molecularly related to viruses in the family Closteroviridae. The genomic sequences of two PAmpV-Ju variants named AKS15-20 and AKS15-17 were determined by RT-PCR amplifications. The genome structure of PAmpV-Ju was identical to that of a recently reported persimmon ampelovirus (PAmpV) and consisted of seven open reading frames. The genomes of AKS15-20 and AKS15-17 shared 83.7% nt identity with each other, and the highest nt sequence identity of 79% with two variants of PAmpV. The incidence of PAmpV-Ju on Aksu jujube plants was evaluated by RT-PCR assays. The phylogenetic analysis of amplified partial sequences coding for polymerase, HSP70h, and CP revealed two phylogenetic clades represented by AKS15-20 and AKS15-17. Our study provides important evidence for understanding viruses infecting jujube plants and establishing efficient measures to prevent virus spread.


Assuntos
Closteroviridae , Closterovirus , Ziziphus , Frutas , Filogenia , China
20.
Adv Sci (Weinh) ; 10(3): e2204308, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36515275

RESUMO

To date, viroids have been found to naturally infect only plants, resulting in substantial losses for some crops. Whether viroids or viroid-like RNAs naturally infect non-plant hosts remains unknown. Here the existence of a set of exogenous, single-stranded circular RNAs, ranging in size from 157 to 450 nucleotides, isolated from the fungus Botryosphaeria dothidea and nominated B. dothidea RNAs (BdcRNAs) is reported. BdcRNAs replicate autonomously in the nucleus via a rolling-circle mechanism following a symmetric pathway. BdcRNA infection induces symptoms, because BdcRNAs can apparently modulate, to different degrees, specific biological traits (e.g., alter morphology, decrease growth rate, attenuate virulence, and increase or decrease tolerance to osmotic and oxidative stress) of the host fungus. Overall, BdcRNAs have genome characteristics similar to those of viroids and exhibit pathogenic effects on fungal hosts. It is proposed that these novel fungus infecting RNAs should be termed mycoviroids. BdcRNA(s) may be considered additional inhabitants at the frontier of life in terms of genomic complexity, and represent a new class of acellular entities endowed with regulatory functions, and novel epigenomic carriers of biological information.


Assuntos
Viroides , Viroides/genética , Viroides/metabolismo , RNA Viral/genética , Plantas , Fungos/genética , Fungos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...